Learning Hybrid Part Filters for Scene Recognition
نویسندگان
چکیده
This paper introduces a new image representation for scene recognition, where an image is described based on the response maps of object part filters. The part filters are learned from existing datasets with object location annotations, using deformable part-based models trained by latent SVM [1]. Since different objects may contain similar parts, we describe a method that uses a semantic hierarchy to automatically determine and merge filters shared by multiple objects. The merged hybrid filters are then applied to new images. Our proposed representation, called Hybrid-Parts, is generated by pooling the response maps of the hybrid filters. Contrast to previous scene recognition approaches that adopted object-level detections as feature inputs, we harness filter responses of object parts, which enable a richer and finer-grained representation. The use of the hybrid filters is important towards a more compact representation, compared to directly using all the original part filters. Through extensive experiments on several scene recognition benchmarks, we demonstrate that Hybrid-Parts outperforms recent state-of-the-arts, and combining it with standard low-level features such as the GIST descriptor can lead to further improvements.
منابع مشابه
Adaptive scene-dependent filters in online learning environments
In this paper we propose the Adaptive Scene Dependent Filters (ASDF) to enhance the online learning capabilities of an object recognition system in real-world scenes. The ASDF method proposed extends the idea of unsupervised segmentation to a flexible, highly dynamic image segmentation architecture. We combine unsupervised segmentation to define coherent groups of pixels with a recombination st...
متن کاملVector Quantization Region Cleanup Grouping & Classification Multi - Scale Gabor Wavelet Filters Codebook Structural Models Image Hypotheses Recognition Codebook Generation Supervised Learning System Learning Stage IIStage
We address the problem of describing, recognizing, and learning generic, free-form objects in real-world scenes. For this purpose, we have developed a hybrid appearance-based approach where objects are encoded as loose collections of parts and relations between neighboring parts. The key features of this approach are: part decomposition based on local structure segmentation derived from multi-s...
متن کاملA New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection
Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...
متن کاملDistortion-Invariant Pattern Recognition with Adaptive Correlation Filters
Pattern recognition based on correlation is one of the most useful techniques for many applications. Since the pioneer work of VanderLugt (1964), correlation filters have gained popularity thanks to their shift-invariance property, good mathematical basis, and easy implementation by means of digital, optical or hybrid optical/digital systems. However, conventional correlation filters are sensit...
متن کاملGeneralized Aggregation of Sparse Coded Multi-spectral for Satellite Scene Classification
Satellite scene classification is challenging because of the high variability inherent in satellite data. Although rapid progress in remote sensing techniques has been witnessed in recent years, the resolution of the available satellite images remains limited compared with the general images acquired using a common camera. On the other hand, a satellite image usually has a greater number of spe...
متن کامل